Specialist Methods (Year 11)

(Trigonometry and Functions)

Practice Test\#1

Please Note: Use calculator wherever necessary
Marks: 50
Time: 3600 sec

1. Two rowers set out from the same point. One rows N70 ${ }^{\circ} \mathrm{E}$ for 2000 m and the other rows $\mathrm{S} 15^{\circ} \mathrm{W}$ for 1800 m . How far apart are the two rowers?
2. From point P, a ship (S) is sighted 12.4 km away on a bearing of 137°. Point Q is due south of P and is a distance of 31.2 km from the ship. Calculate the bearing of the ship from Q , correct to the nearest degree.
3. The cord supporting a picture frame is 58 cm long. It is hung over a single hook in the centre of the cord and the cord then makes an angle of 145° as shown in the figure on the right. Calculate the length of the backing of the picture frame, to the nearest centimetre.
[4]

4. Sketch $\mathbf{y}=\mathbf{3} \tan (\pi x / 2)$ over the range $[-2,4]$
5. Sketch the graphs of the following functions and state (i) the period and (ii) the amplitude of each.
(a) $y=4 \cos 3 x$ for $-360^{\circ} \leq x \leq 360^{\circ}$
(b) $y=-\sin 4 x$ for $-2 \pi \leq x \leq 2 \pi$
6. 16. $\mathbf{X Y Z}$ is a triangle in which $X Z=7 \mathrm{~cm}$, A circle, center \boldsymbol{Y} and radius $\boldsymbol{Y Z}$, cuts $\boldsymbol{X Y}$ internally at \boldsymbol{D}. Given $X D=5 \mathrm{~cm}$ and $D Z=4 \mathrm{~cm}$, calculate the length of $Y Z$ and the area of the triangle.
1. Find \mathbf{x} if $\sqrt{2} \cos \mathbf{x}+\mathbf{1}=\mathbf{0}$ over the domain $-2 \pi \leq x \leq 2 \pi$
2. A walker walks on a flat plane directly towards a distant high rocky outcrop R. At point A the angle of elevation of the outcrop is 24°, and a km closer at B the angle of elevation is 32°.
(a) Find the horizontal distance from B to the outcrop, to the nearest meter.
(b) Find the height of the outcrop above the plane, to the nearest meter.
3. The circle $x^{2}+y^{2}=36$ meets the positive direction of the x-axis at A. Find the coordinates of the points P on the circle such that angle AOP $=60^{\circ}$.
4. Prove the following -
a) $\sin 2 x+\sin 4 x+\sin 6 x=4 \cos x \cdot \cos 2 x \cdot \cos 3 x$
b) $\frac{\sin \theta+\sin 3 \theta+\sin 5 \theta}{\cos \theta+\cos 3 \theta+\cos 5 \theta}=\tan 3 \theta$
c) $\cos 4 x=8 \cos ^{4} x-8 \cos ^{2} x+1$
d) $\frac{\tan 2 \theta-\tan \theta}{\tan 2 \theta+\cot \theta}=\tan ^{2} \theta$
